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Remark on Nonexistence of Global Solutions of the
Initial-Boundary-Value Problem for the
Nonlinear Klein—Gordon Equation

D. D. Bainov! and E. Minchev?
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Sufficient conditions are given so that the solutions of the initial-boundary-value
problem for the nonlinear Klein—Gordon equation do not exist for all ¢ > 0.

1. INTRODUCTION

Consider the initial-boundary-value problem (IBVP) for the nonlinear
Klein—Gordon equation:

Uy — Au + pu = f(ul®u, t € [0, T), x e, QCR"
u(0, x) = ug(x), x e ()
u!(O’ x) = ul(-x)v X € Q

ut, )|, =0 tel0,T)

The above problem has various applications in nonlinear optics (espe-
cially instability phenomena such as self-focusing), plasma physics, fluid
mechanics, etc. We obtain some a priori estimates for the solutions of the
IBVP under consideration. We give conditions on the initial functions u, and
u; and on the function f such that the solution of the above problem blows
up at a finite time + = 7. The singularity of the solution occurs at x = 0 and
is 8-function-like.
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2. PRELIMINARY NOTES

Let ) be a bounded domain in R" with a smooth boundary Q) and
[0, ...,0) e Q. WedefineG=1[0,T) X Q,G,=1[0,T) X , where T
>0,0=0U230.

Let us consider the IBVP for the nonlinear Klein—~Gordon equation:

u, — Au + pu = f(lul®u on G )]
u(0, x) = ug(x), x e (2)

u, (0, x) = u\(x), xe ) 3)

ut, ) _,n =0 tel0,T) 4)

where w = 0 is a constant, f is a given real-valued function, and u,, u, are
given complex-valued functions.

We will consider the following Banach spaces of measurable functions
with the norms:

l/q
L) = {u(x): lull,0 = (J lu(x)19 dx) < 00}
0
!
Wy(Q) = {uoc): lulviier = >, 1Dl < oo}
j=0

Wi = W) N {u(x): ()| ceaq = 0}

In the sequel we need the following theorem.

Theorem 1 (Ladyzhenskaya er al., 1967, pp. 84-85). For each function
u € Wi(Q) we have the inequality

lulbo = B(mes D' - [[Vulho

where

2 if n=lorn=2

We denote by & the complex conjugate of u.
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3. MAIN RESULTS

1271

First of all we obtain some a priori estimates for the solutions of the

IBVP (1)-(4).

Lemma 1. Let u € CXG) N CYG,) be a solution of the IBVP

(1)~(4). Then
EH) =Cy + j F(lu(t, x)1%) dx
Q

where

E@® = lu®lEa + IVu®Ba + wlu@lBa

Co = lula + IVuglBa + wluolBa - j Fluo()1?) dx
0

Jul?

F(lul?) = J f(s) ds

0
We omit the proof of Lemma 1.
Lemma 2. Let the following conditions hold:
1. u € C¥G) N CY(Gy) is a solution of the IBVP (1)—(4).
2. s fs) — f fik)y dk = 2Ms — M,

0

for s = 0, where

1 1
—— — tp=M=— M;=0
B%(mes Q)¥" H T 2

are given constants.
Then

I'(n Sf F(lu(t, x)1?) dx, te[0,T)
0

where

[ = 5 (G = Ce! + Myfmes @) = Co)

C{ = Cy + My(mes (1), C = Re{f u W)dx}
a

(5)

(6)

M
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Proof. Let G, = {(1,x): T € [0, 1], x € Q}, t+ < T. Multiplying both
sides of (1) by & and then integrating over G,, we obtain

I (uyi — Auui + pun) dx dv
G,
=J FQul®)lul? dx dr
G,
d _ 2 — 2 2
zt(u,u) —lul? =V - (Vuw) + 1Vul®> + wlul?| dx dr
G,

= J Ful®ul? dx dr
G,

RC{J u,(t, X)u(t, x) dx} - Jl lu (3.0 dr
o 0

¥ J IVumlBa dr + 1 f lulBa dr

0 0

= f FUu(m, )1 u(t, x)12 dr dx + C,
G;

On the other hand, (5) implies

Re{f u,(t, x)u(t, x) dx}
Iy}

=2 f le(m)l3a dr + C, — Cyt
0

+ J Su(t, X))l ulr, x)|1% dt dx — J F(lu(r, x)1?) dt dx
G, G;

{4

Therefore, the inequality (6) yields

J u,(t, x)u(t, x) dx‘
0

!
= C - Cy +2 f N lBa + Milum|E) dr
0

Now we use Young’s inequality in order to obtain
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1
2@l + g 4010 =

J u,(t, x)u(t, x) dx‘
0

Since M, = 1/16, we get

2.0 + 2Mflu®l3.0

!
=2 f UuBa + Miluml3e) dr — Cit + C,
0

Let us define now
X = 2/lu®l3a + 2M[lu()lia

Then the inequality (8) has the form

t
X() Ej X(t)ydr — Cot + C,
0

which is a Gronwall-type inequality.

Denoting
Y(») = f X(t)dr — Cyt + C,
0
we obtain
Y'()) = X@t) — Co = Y(r) — Cy
Let

Z'(y = Z(t) — Cy
Z0) = C,

1273

(®)

It is easy to prove that Z(¢r) = Y(¢) for ¢t € [0, T). Therefore we con-

clude that
X@0) = Y(@®) = Z) = (C, — Cple' + Cy
In other words,

20u Ol o + 2Millu®li 0 = (€ — Cole' + Cg
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Now (5) and Theorem 1 imply
(Cy — Cple' + Cy
=2C, +2 f F(lu(t, x)12) dx = 2||Vu(®|3q
Ja

= 2plludiza + 2M\llu®)l30

(
<2C, + 2| FQu(t, x)1?) dx
/0

Therefore, we have the inequality

'@ SJ F(lu(t, x)|2) dx, te0,7) m
[}

Theorem 2. Suppose that the following conditions are fulfilled:
1. The conditions of Lemma 2 hold.

2. IF(s)| =y - s €)]
where s = 0,y>0,p> 1.

3. >0 (10)

If

—-T
1<T

limJ bl + [u)2P0+Un gy = Q
a

then
lim ||lu(®)ll,0 = 0 for 1=g<2p
1-—)_;1:
1<

linrl lullgxi<e = @ for 2p<g=w
1—

<T
for each fixed and sufficiently small € > 0.
Proof. By means of Lemma 2 and (9) we have the inequalities

'y = J F(lu@t, )1 dx <y j lu(t, x)1% dx
Q Q

It follows from the Holder inequality that
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j Iulz”dx=f lul?ul? dx
o} 0

)

= llul,.0 - Hullfp0
where s = 1, g = 1, I/s + 1/g = 1. Therefore for fixed and sufficiently

small € > 0 we have that

F(I)S'yf lu(t, x)1% dx + f lu(t, x)1% dx

lxl<e
lx!>e€

xef)

= 'yuu(t)"gp,(lxKe) : "u(t)“Zp.(lxKe) + Y J Iu(tv x)|2p dx (“»)
Ixi>e
xeQ)

wheres=1,g= 1, l/s + 1/g = 1.
Now if 1 = s < 2, the Holder inequality enable us to get

g

21+ Un)is
- ( [ ure dx)
o}

2(1+ UUn)ls
— (J lxl—:/2(l+l/n)|x|s/2(l+l/n)|u|sp dX)
0

201+ 1/n)s—1
< (J |x|—[[2(1+|/n)/:]—|)" dx)
o)

X (J lxl - lu) 2P+ 1m dx)
Q

SA(J IxI-Iulz”““’")dx)—)O as t—7T, t<T
o]

Therefore

lim [lu()]l40 =0 if 1=g<2p
=T

1<T
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It is not difficult to obtain

L+1l/n
( J || 2P dx)

lxI>e
xeQ)

= "u"%ﬂ(\; grel?xeﬂ)

= B"u"%ﬁ} i {x’x;.(lxbe;xeﬂ)

=B J |u|2p(l+l/n)dx

Ix1>e
xe)

< g J Ix| - |u|2p(|+l/n)dx
€

IxI>e
xef)

B
<= J ix| + [wi2P0+Um gy 5 0 as toT 1<T
€

xe}

It follows now from (i1) that
lm; "u(t)"q,(lxl<e) = ® lf 2p < q =x N
e
Remark 1. Let f(s) = s and M, = 2M3. Then (6) is fulfilled.

Remark 2. Assume f(s) = s»™', A > 1, s = 0. Then | F(s)| = (I/\) s,
A > 1, and therefore (9) holds.

Remark 3. The inequality (10) deals with the initial functions ug and u,.
Let us consider the next example:

Q=[0,1, T=h2 M=5 p=1

F(s) = lOOJ k dk = 50s2
0

ug(x) = x* — x, u(x) = x%’ x e [0, 1]

Then I'(T) = I'(ln 2) > 0.
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Remark 4. The assumption

limj [x| - 1u2P+Um dy =
Q

—T
<T

of Theorem 2 comes from an experimental point of view. The numerical
computations show that the singularity of the solution occurs at x = 0 and
is 8-function-like (Kelley, 1965; Zakharov et al., 1971). The exact numerical
computations of integrals of the type [q lu(t, x)I? dx fort - T, t < T, are
difficult due to the presence of such a singularity of the solution. In contrast,
integrals of the type [q lx| - 1ul” dx can be calculated numerically with
sufficient exactness fortr - 7, t < T.
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